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Theoretical simulation of localized holes in MgO 
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t Departmen1 of Chemical Physics of Condensed Matter, University of Lalvia, 19 Rainb 
Boulevard, 226098 Riga, Lalvia 

Received 4 Februaiy 1992 

Abslrnel We propose a consisten1 approach IO Ihe sludy of hole self-lrapping and 
diffusion in ionic ciyslals based on the slalic quanlumchemical calculation of the self- 
lrapping energy and adisbalic barriers lor hole diffusion. The calculalions made for 
MgO revealed the possibility Illat the hole is localized on one anion sile in lhe perfect 
latlice and predicl its high mobilily. 

1. Introduction 

Despite its long history, the theory of small polarons is still incomplete. Detailed 
discussions of its present status have been presented in [I, 21. There have been only 
a few theoretical studies combining a many-electron treatment of the electronic struc- 
ture of the localizing polaron with the Mott-Littleton approach for the calculation 
of the accompanying polarization of the rest of the crystal [3-6]. Such studies have 
the advantage of being specific and applicable to particular crystals. In this paper 
we shall study the various possibilities for hole self-trapping and mechanisms of their 
mobility in the bulk of the crystal; we calculate thc key energetic terms using static 
quantum-chemical methods which we apply to MgO-one of the simplest crystalline 
oxides. 

There are at least two differcnt ways in which to approach the problem of particle 
localization or self-trapping in a material. 

(i) Calculate the self-trapping energy, which is the difference between the energies 
of the bottom of the free particle band and the localized stable state. 

(ii) Study the barriers for the particle transitions betwcen equivalent localized 
states or for their release from the localized state to the nearby impurity. 

In the present paper, which focuses on the question of hole localization in MgO, 
we employ both approaches, starting from the well established state of the  hole 
localized near the Li+ ion substituted for Mg2+ on a lattice site. 

In cubic oxides and in particular in MgO, the localization of the small polarons 
near impurities is a well established phenomenon [7]. One of the best studied is 
the [Lilo centre in MgO, which plays an important role in the catalytic activity of 
this crystal [8]. It is known that the [Lilo centre is destroyed by optical excitation 
in its absorption band or thermally at relatively low temperatures (about 200 K) [7]. 
However, the products resulting from its decay have not been observed. This result 
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distinguishes the [Lilo centre from analogous impuriry hole centres (Ag2+, 7Izt [9, 
101 and Mgt Ill]) in alkali halides, in which their optical and thermal destruction 
produces the  self-trapped holes (V, centres). 

The self-trapping of holes has not been spectroscopically observed in MgO, al- 
though experiments employing various types of crystal excitation have been carried 
out. One of the most plausible reasons for such behaviour for holes in MgO may be 
high mobility, which makes it difficult to observe them experimentally by spectroscopic 
techniques, although we should note that the only evidence favouring the existence 
of highly mobile holes mncerns their behaviour on the surface of MgO at high tem- 
peratures [12]. Recent theoretical calculations of self-trapping energies indicated that 
small-polaron formation is not favoured [13, 141. It was suggested that, despite the 
large lattice. relaxation energy (1.7 eV [13] and 2.4 eV [14]), the holes cannot self-trap 
in the bulk of MgO because the localization energy has almost the same magnitude, 
but with the opposite sign. However, an estimate of the localization energy was 
made using a crude approximation, allowing only qualitative conclusions to be drawn. 
Therefore a more sophisticated treatment is clearly needed; in particular we require 
a mnsistent calculation scheme for both relaxation and localization energies. This 
would be of value for studies not only of MgO but also of other insulators, e.g. SiO, 
or AI,O,, where the self-trapping of the holes is still a subject for discussion [IS, 161. 

Tho different approaches are used in this paper. First, we consider the hole 
localized on the [Li]" centre and calculate the adiabatic barriers both for its jump 
from the axial into the equatorial position within the centre and for its jump out of 
the centre. The heights of these barriers are both about 0.9 e v  which seems to be 
unreasonably large. 'lb investigate the factors that might decrease the barrier height 
we calculate the adiabatic barricrs for the hole diffusion in the perfect lattice and 
include the effects of interatomic electron correlation, which we find considerably 
decrease the barrier for hole migration. Therefore it seems plausible to conclude 
that the thermal destruction of impurity hole centres in MgO leads to the creation of 
rapidly moving small-radius polarons (SRPs). 

In order to check this conclusion we calculate the energy for the self-trapping 
of the hole from the free delocalized state into the state in which it is localized on 
one site of the perfect lattice. This energy may serve as an indicator of how far the 
localized state (if it exists) is from the band of delocalized states, and together with 
the value of the barrier for the hole jumps between localized states this may give a 
more reliable picture of the behaviour of the holes in the lattice. For this purpose, 
we introduce a new technique for the calculation of the localization energy. The 
self-trapping energy is calculated to be negative but small, confirming that the holes 
may localize but will be very mobile. 

The plan of the paper is as follows. First we shall discuss (in section 2) the 
method of calculation based on the embedded-molecular-cluster (EMC) quantum- 
chemical approach, with the rcsults of the calculations for the hole centres in MgO 
given in section 3. Further discussion and conclusions are given in section 4. 

2. Method of calculation 

In the study of the positively charged hole states we nced to reproduce reliably the 
chemical interactions of ions near the hole centres, the long-range interaction usually 
described as crystal polarimion, and the band structure of the perfect crystal. For 
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this purpose we use the EMC [3, 4, 171 model and the large-unit-cell (LUC) method 
[18], both of which are combined in the CLUSTER code [3, 191, which was employed 
in most of the present calculations. 

The CLUSTER code is based on the semi-empirical version of the UHF method 
implementing the approximation of intermediate neglect of differential overlap (INDO) 
[m], which allows us to obtain (with reasonable accuracy) the electronic structure of 
a quantum cluster or Luc containing several tens of ions. The polarization of the 
crystal is treated in the polarizablc-ion approximation [3, 17, 211. It is calculated 
consistently with the electronic structure calculation at each point of the adiabatic 
potential energy surface as a response to the electric field produced by the difference 
between the charge-dcnsity distributions A p ( n i )  in the perfect lattice and in the 
molecular cluster containing the defect [3]. The values of Ap(Rz)  are treated in 
the ionic approximation as the difference between the effective charges (calculated 
according to the Ewdin population analysis [ZO]) of the cations and anions in the 
perfect lattice, calculated by the Luc method, and ions with the coordinates Ri in 
the molecular cluster. The lattice polarization is recalculated for each of the several 
iterations of the UHF self-consistency procedure. The matrix elements of the potential 
produced by the polarized lattice are included in the diagonal elements of the Fock 
matrix. 

The parameters of the INDO method were optimized to reproduce both the  prin- 
cipal features of the electronic structure of the perfect crystals under study as well 
as the equilibrium distances and dissociation energies of relevant diatomic molecules 
including MgO, LiO, O;, Mg:, etc [19]. Such a parametrization improves the relia- 
bility of the defect calculations. The basis sets contained 2s Slater-type atomic orbitals 
for Li+, 3s for Mgz+ and Zs, 2p for 0". The lattice constant and the electronic 
structure of the perfect MgO were obtained in a previous study of the perfect crystals 
using the LUC model (191, and their values were also used in defect calculations. 
Finally, the ionic polari7abilities were taken from [22]. 

The electronic excitation energies were calculated as the difference between the 
total self-consistent energies of a crystal in its ground and excited states (the ASCF 
method). The g-tensor for the paramagnetic [Lilo centre was calculated employing 
the Stone [U] equation, derived using second-order perturbation theory to describe 
the spin-orbit and Zeeman interactions of the unpaired electron orbital momenta 
with the magnetic field, as is widely used in quantum-chemical studies. 

3. [Lilo centre and SRp in MgO 

3.1. Atomic and elecrronic slructurc of the [Li lo  centre 

The [Lilo centre in MgO has been much investigated both experimentally and theo- 
retically [3, 7, 131. Our calculations focus on the question of hole jumps around the 
Lit  ion, and of the thermal decomposition of the centre. The structural model of 
the centre is shown in figure 1. The displacemcnts of ions surrounding the centre are 
given in the figure; they are close to those obtained in the previous calculation [B]. 
The hole is localized mainly on one of the oxygen ions, which appears to be strongly 
displaced from the regular lattice site. The calculated position for the maximum of 
the optical absorption band is E,,,,, = 1.8 eV and the components of the g-tensor 
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are g l  - 2 0043 and g1 = 2.038. They agree quite satisfactorily with the corre- 
spon mg expenmental values: E,,,,, = 1.83 eV [17]; g,, = 2.0049 and gL = 2.0545 

The optical absorption of the [Lilo and related impurity hole centres has been 
established as being determined by transitions from resonant states in the valence 
band into the local hole state in the gap [24]. The present calculations add quantitative 
details to this qualitative model. In particular, there are two sources for perturbations 
which give rise to the resonant states in the valence band: first, the strong perturbation 
of the surrounding nearest-ncighbour anions by the Lit ion; second, the much weaker 
perturbation of the next-nearest-neighbour anions by the hole localized on one oxygen 
anion. The first perturbation produces the resonant states near the top of the valence 
band, whereas the second perturbation produces resonant states near the bottom 
of the valence band. The maximum of the optical absorption band of the centre 
corresponds to the transitions from the resonant states near the top of the valence 
band. The energies of all such transitions depend very much on the  values of the 
ion displacements [Ill. The good agreemcnt of our optical transition energy and 
g-tensor with the experimental results shows that the geometly of the centre is also 
determined reliably. 

3.2. Hole jumps near the [ L i l o  centre and sxp in MgO 
All six anions surrounding the Lit ion are equivalent. According to the EPR data 
the hole localized in the [Lilo centre jumps between them, even at liquid-helium 
temperature 17, 251. The estimate of the activation encrgy of these jumps made in [m by fitting to the experimental kinetics gives a value of 0.2 eV A much higher 
value of 0.8 eV was obtained in recent Mott-Littleton calculations [13]. It is also well 
established that individual [Lila centres are thermally decomposed at about 200 K [7]. 
This relatively low temperature also seems to contradict the results of [13], in which 
a value of 0.77 eV was calculated for the barrier of the first step of the Lit ion- 
hole separation (see figure 1). These calculations were made on the assumption that 
the hole transfer process takes place adiabatically, i.e. the relaxation of the reaction 
coordinate is much slower than hole exchange between trapping sites. 

The way in which the transition between sites occurs plays a key role in the 
calculations and has to be addressed for each system individually, as discussed recently 
in 11, 21. A useful ‘adiabaticity’ parameter G, has been introduced in 1261. It is 
determined by the ratio of the ‘time spent’ by the reaction coordinate in the Landau- 
Zener region [27] to the time taken by a one-electron (or a one-hole) transition 
between trapping sites. A large value of this ratio means that the barrier state may 
be approximately treated as stationary and calculated, taking into account both the 
electronic and the ionic relaxation of the lattice. The parameter G is defined as [26] 

(J.- . . 
I?. 

G = flrrlT]2/hC22,ER (1) 

where T is the electron transfer matrix element, E, is the so-called reorganization 
energy and l/Q, is the rclaxation time of the reaction coordinate. In order to 
estimate the value of G we have calculated the reorganization energy and the transfer 
matrix element for the case of hole transfer between the nearest sites around the Lit 
ion in the [Lila centre. 

According to the conventional definition [XI, ER may be calculated as the differ- 
ence between the energy at the adiabatic potential energy minima, corresponding to 
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the hole localization at one of the oxygen anions, and the state when the hole is local- 
ized at a nearest-neighbour oxygen anion but with the crystal relaxation remaining the 
same as in the first case. The calculation of T is much less straightforward [28, 291. 
As shown in [29], Cor the case of electron transfer between strongly interacting reso- 
nant states, a good estimate of T may be obtained in terms of the charge-delocalized 
solution, using the following expression: 

Here E- and Et are the system total energies at the top of the adiabatic barrier, 
corresponding respectively to the many-electron states rY- and Qt, obtained from 
the configurational mixing between the non-orthogonal diabatic states Q, and Q,, 
localized at each diabatic minimum. The CJ* wavefunctions may be written as 

where the S,, is the overlap integral between Ql and Qz. RI a good approximation, 
Et may be calculated as the crystal total energy, corresponding to the barrier-type 
relaxation and the wavefunction equally delocalized by two oxygen ions, whereas E- 
is the crystal total energy, corresponding to the one-electron excitation from this 
state to the 9- anti-bonding-type state, differing mainly by the sign in the linear 
wmbination of atomic orbitals, localized on the two oxygen anions. 

The resulting values of T and ER, calculated for the hole jumps between two 
nearest oxygen anions in the [Lilo centre are 0.25 eV and 2.0 e\! Assuming that the 
value of R, is between I O t 3  and 10t4s-’, we obtain for G an estimate of 3-30, i.e. 
larger than unity. This supports the ability to use the adiabatic approximation in the 
barrier height calculation for the hole jump between nearest sites. 

The calculated values of the adiabatic barriers for the hole transfer between two 
nearest oxygen anions in the [Lilo centre and for the hole jump into the next-nearest- 
neighbour position appeared to be very close to each other and equal to about 
0.9 e v  i.e. even larger than those obtained in the Mott-Littleton calculations [13]. 
This is most surprising for hole jumps around the Li+ ion. The large barrier for 
the first jump of the hole out of the [Lilo centre may be partly caused by the large 
Coulomb interaction between the Li+ ion and the hole. It should also be noted 
that the extent of the hole localization does not change in the next-nearest-neighbour 
position relative to the Li+ ion; it is still almost completely localized on one oxygen 
anion. One of the reasons for the large barrier for the hole jump from the axial into 
the equatorial position might be the large axial lattice relaxation around the [Li]” 
centre. However, both results contradict experimental observations. Moreover, if the 
interaction between the hole and the impurity centre is so important, one can assume 
that the barrier for the unperturbed hole jumps between nearest sites of the perfect 
lattice has to be much lower. 

’Ib investigate this assumption and possible reasons for such large values of the 
barrier heights, we have simplified the system by performing the calculations for the 
localized hole transfer between nearest sites in the perfect lattice. The previous 
calculations [13, 141 suggested that the holes could not self-wap in MgO because of 
the large value of the localization enerby. Therefore one could expect that the barrier 
for their intersite transfer has to be low, reflecting a high mobility. Surprisingly we 
obtain a value for the adiabatic barrier of 0.66 e\! This result reveals clearly that the 
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perturbation by the defect is not the main reason for the high barriers also in the 
previous case. Analysing the contributions of different factors to the barrier value, we 
find that about 30% of it is due to a repolarization energy, i.e. the difference between 
the energies of the polarization of the lattice by the hole localized on one site and 
delocalized by two sites. That is, in the delocalized case the polarization energy is 
about 0.2 eV smaller than in the localized case, contributing this value to the barrier 
height. 

It is well known that electron correlation is especially important at reaction barrier 
regions and usually considerably affects their height. In our calculations the intra- 
ionic part of the electron correlation is effectively included in a semi-empirical manner 
through the electronic part of the lattice polarization and the experimental values of 
the ionic polarizabilities used in the calculation. In order to estimate the possible 
role of the interionic part of electron correlation we have performed ab inirio cluster 
calculations of the localized and delocalized hole states. 

3.3. Role of the electron correlation in the calculation of the adiabatic barrier of the SRp 
jumps 

In calculating the magnitude o l  the differential electron correlation between the 
localized state situated on a given oxygen anion and the adiabatic barrier state for the 
hole transfer between nearest oxygen sites we have employed an embedded-cluster 
model. This comprises two explicitly treated oxygen anions surrounded by a point ion 
array chosen to reproduce the Madelung potential of the infinite crystal at the oxygen 
site. A b  initio allelectron calculations were performed using the program GAMESS 
[30], within the GVB formalism [31] to treat the open shell hole states at the Hartree- 
Fock level. The basis set utilized was 8-411G'. optimized for bulk magnesium oxide 
within the program CRYSTAL [32]. 

Post-Hartree-Fock treatment of the electron correlation was incorporated by con- 
figurational interaction involving single and double excitations (CISD) [33], with an 
active space that includes all valcnce electron orbitals and their corresponding virtual 
states. 

Because of their point charge nature, it is not possible to perform geometry opti- 
mization of the surrounding ions. Hence, the positions of the nearest-neighbour em- 
bedding ions were taken to be the same as those calculated by the C W s T E R  method. 
For the localized hole state the nearest magnesium cations are displaced 0.06~ away 
from the oxygen anion on which the hole is situated, while the surrounding 12 oxygen 
anions relax towards the central oxygen anion by 0 .03a .  At the transition state for 
hole migration, both oxygen anions are predicted by the semi-empirical method to 
relax by approximately 0.2 8, away from each lattice site towards each other, with the 
magnesium cations now displaced 0 . 0 3 ~  away from both oxygen sites. 

The adiabatic barrier to hole transfer is given by the energy difference between 
the state in which the hole is completely localized on one oxygen centre and that in 
which it is equally distributed over the hvo adjacent oxygen sites, with the geometries 
of surrounding ions as described above. This barrier is found to be 1.05 eV at 
the ab inifio Hanree-Fock level, while inclusion of ClsD for the valence electrons 
greatly reduces this value to 0.23 eV The correlation energies for the one-centre and 
two-centre localized states at these particular geometries are calculated to be 9.8 eV 
and 10.6 eV, respectively. Therefore the reduction in barrier height is due to the 
difference A between these two correlation energies. We have further examined the 
variation in A as a function of the separation between the two explicitly considered 
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oxygen anions in the hole migration transition state. The magnitude of A is found 
to be approximately invariant at 0.S eV over a range of 0.8 A in the inter-oxygen 
distance. 

To explain the difference between the corrclation energies of the localized and 
delocalized states it is nccessary to examine the nature of the dominant excitations. 
At the transition state, the symmetry of the system is D2b and the main excitation 
involves the promotion of an electron from the doubly occupied ug orbital to the 
singly occupied nu, and of a second elcctron to an unoccupied orbital. In the case of 
the localized hole state the electronic configurations with the largest coefficients in the 
CI expression do not involve excitations to or from the singly occupied orbital. Hence 
the majority of the correlation energy is due to electrons in the doubly filled valence 
orbitals. Consequently, at the barrier point to hole migration, the hole is distributed 
over several orbitals in the cI expression, giving rise to an extra contribution to the 
correlation energy. 

While the above ab initio  calculation^ can only be considcred as a preliminary 
study, the importance of inclusion of correlation is apparent. Although the value of 
A, equal to -0,s ey cannot be treated directly as an additive corrcction to the barrier 
height of 0.66 eV obtained scmi-empirically, thc magnitude of the term is sufficiently 
large to suggest that the barrier for hole migration between nearest perfect lattice 
sites will be greatly reduced. Thc same arguments may be used to understand the high 
barrier values for the hole jumps near the dcfcct. Since physically the processes are 
identical, it is quite plausible that the calculated barriers will be reduced if electron 
correlation were to be taken into account. 

The correlation included in the ab i n i h  calculations comprises both intra-ionic 
and inter-ionic contributions; however, thc polarization energy calculated semi- 
empirically already includes intra-ionic polarimtion of oxygen anions sharing the hole. 
Consequently the value of A ohtained here docs not allow us to reach a more defi- 
nite quantitative conclusion withour performing more cxtensive ab initio calculations 
including both polari7ation of t h e  surrounding lattice and elcctron correlation inside 
the cluster. 

3.4. Self-tmppingfronr the free hole sfute 

Now, let us compare the results ol the above calculations with the calculation of 
the self-trapping energy from the free hole state. Strictly speaking, in order to do 
this we need to use a method suitable for both localizcd and completely delocalized 
hole states. In principle the best candidate is the model Hamiltonian (MH) approach 
developed by Toyoi.awa [34J. Howcvcr, at prcsent such methods do not allow us 
to take into account the microscopic structure of thc hole (i.e. the hole electronic 
density distribution and large displaccments of surrounding ions). On the other hand, 
quantum-chemical methods are wcll suited to describing local chemical interactions of 
ions near a point defect treated in terms of the molccular cluster but fail to consider 
hole states delocalized through a whole crystal. Our idea is therefore to combine 
both methods. 

The assumptions used in such an approach are as follows. 

(i) The valence and free hole bands havc equivalent dispersions. 
(ii) The electronic polarization of the crystal produccd by the delocalized hole 

(iii) The hole state artificially lowlizcd in thc molecular cluster, simulating the 
and the hole localized on one site are equal. 
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perfect lattice, can be used as the initial state for the stationary quantum-chemical 
relaxation energy calculation. 

In these assumptions we can find the bottom of the Cree hole band and the 
energy of the state in the band, corresponding to the certain degree of localization 
(one, two, etc, sites). The difference between these two energies will give us the 
so-called localization energy Elm. Now, starting from the same localiied state in the 
cluster calculation, one can find the relaxation energy E,,, as a difference between 
crystal energies in that state without ionic displacements and the completely relaxed 
localized state. The sum of E,,, and E,, is believed to be the self-trapping energy. 
In the simplest approximation the value of E,,, may be taken as half the valence 
band width [35-371. In this approximation, the localization energy has been found to 
be close to or  larger than the E,, in MgO 113, 141. 

In the present paper we uscd the more accurate MH method to calculate the hole 
localization energy on one or two anions. When constructing the MH, one has to  take 
into account the fact that, since the upper valence bands of the alkali halides and 
oxides are formed by the p states of anions, the off-diagonal (in lattice sites) matrix 
elemens of the MH differ from each other evcn for anions entering the same anion 
sphere. Neglect of the.. differences leads to an overestimate of the hole localization 
energy, as is the case for earlier studies [36,37]. Let us write down the Hamiltonian 
of a perfect crystal in the tight-binding approximation incorporating two anion spheres 
oC nearest neighbours. First, the free-hole Hamiltonian in site representation reads 

A L Shlugcr CI R I  

(2) = - C c o u t , , u L , ,  - C C 1 O , , . L , v u L p a L + L , , ,  + 
L11 L,L' 11,'' 

where L and L' are lattice translational vectors, p. U = x, y, z ,  1;) is the Wannier 
function of p kind localized at the site L. (Coordinate axes are oriented along 
(loo), (010) and (001) crystal axes.) ut,, and uL,, are hole creation and annihilation 
operators at the p,, orbital 1;) placed at the site L. An additional restriction in 
equation (2) is that IL'I < 2a, where U is the interanion distance. It follows from 
the lattice symmetry that t h e  matrix elements to,,,,,,, Cor anions L' in the first sphere 
could be described by three parameters: To (interaction of two p orbitals which lie 
along the vector L' (figure 2) and oriented in the same manner), T,, (p orbitals 
perpendicular to thc vector L' and oriented in the direction of nearest anions) and 
Tw2 (p orbitals perpendicular to L' and directed to the nearest cations). Thus, we 
find for an arbitrary vector L that the matrix t O L ,  = Iltop,L,vll = C t , t L , C L , ,  where 
C,, is the three-dimensional rotation matrix orienting sites 0 and L' along the z axis, 
tL,  diagonal matrix of elements To, Tr1 and T,.. For example, for L' = (1,1,0) 
the matrix C,, is an anti-clockwise rotation by an angle n/4,  t l l  = Tr, t?? = T,,, 
t,, = T x p  We proceed in a similar way for anions L' from the second coordination 
sphere; in this case tL, is diagonal for all L', these diagonal elemen!s are either TA 
or  T .  = Til = TL2. (Their meaning is the same for those in the first sphere.) 

Diagonalization of equation (2) permits us to calculate the dispersion of all three 
hole bands e j ( k ) ,  j = 1,2 ,3 .  Thus, the hole energies at r, X and L points of the 
Brillouin zone (uz) are 

cy  = -c0  - 80 - 4 7  - 26 

e\ = -c0 + 8 0  - 47 - 26 

c! = -eo + 8@+26 
cj: = - € o  + l y  - 26 

E t  = - E o  - 4p + 36. 

(3) 
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FIgum 1. The schematic s~mclure of the [Lilo cen- 
Ire in MgO. Long a m s  show the hole transitions 
into the equalorial position and out or tlic cen- 
Ire. Small a m  indicate the directions of the 
ion displacemenls around the cenlre from their Silc 
position. The numbers near the ends of the Small 
a m  are the values of the ion displacements in 
the unik of MgO lalticu intcrionic distance. 

Figurc 2. The schcmalic illusIration of the notations 
usod in the calculalinn of thc matrix elements of 
thc MH. 

where the superscripts 11 and I dcnotc cnergy brdnchcs whose cigenvectors are paral- 
lel and perpendicular to the direction of the wavevector b. Also, a = i( Tu + T,,), 
p = :(Tu - T,,), y = T,? and 6 = TL + 2";. 

In the state corresponding to hole localization on one ccntre, the hole wavefunc- 
tion may be written as 

a, = u$Jo) 

@ *  = $(U$* t utv +U:, + U:Jlo). 

whereas in the two-ccntre case it t aka  thc form 

The site 0 is placed at the coordinate origin, and site 1 lies on the 0 (110) axis 
(anions 0 and 1 forming the V, centre). The hole self-energy in these states appears 
to be equal to (cf [3S]) 

E ,  = ( a ~ , ~ H h p t )  = 4" E? = ( ~ ) 3 ~ M h ~ ( I l Z )  = - E o  - To. 

Band-structure calculation by mcans of any quantum-chemical method allows us 
to obtain all the paramcters of the Hamiltonian (2). In the present paper these 
calculations were done with the aid of the u l c  mcthod in the INDO approximation, 
employing the CLUSTER code [IS, 191. (Note that the same code was also used for 
the EMC [Lilo centre calculations.) We employed the L u c s  [Mg,OJ and [Mg32032], 
allowing us to obtain energies at corrcspondingly thrce and eight symmetry points 
of the BZ [IS]. The calculation at only r, X and L b-points already satisfactorily 
reproduces the main features of the band structure and electron density distribution 
in ionic crystals [IS]. In particular, the widths of the valence band obtained for the 



5720 A L Shluger et ul 

small Luc (5.8 ev) and for the large Luc (5.9 eV) are very close. In the  three-k-points 
approximation the centre oC mass of the hole band may be written as 

Other parameters of the MH can be easily obtained from equation (3). 
The results of our LUC calculations have dcmonstrated that the localization energy 

depends only slightly on the numbcr of k-points included and appears to be much 
smaller than half the valence band width, used as E,, in the previous studies. Its 
value for the three k-points is calculated to be 1.9 eV and for eight k-points 20 eV. 
The present results concerning E,,, however, should be considered as estimates, 
consistent with the method of calculation of the relaxation energy, since there are 
still discrepancies between the theoretical and the experimental values of E, for MgO. 
In particular, our value of E, = 5.0 CV is larger than the total valence band width of 
5.1 eV obtained in the CRYSTAL calculation 1321 and 4.8f0.3 eV obtained in recent 
experiments 1391. For comparison thc calculations 1401 by the tight-binding method 
gave for E, the value of 8.5 eV More dctailcd discussion of the present status of the 
studies of MgO electronic structure is presented in [13, 32. 401. 

With the present value of E,, and the relaxation energy E,, = -2.4 eV obtained 
in [14] by the same method, we obtain a sclC-trapping energy of about -0.4 e V  Its 
small value show that the localized State of the holc is close to the bottom of the band 
of free hole states. This is consistent with thc conclusion of the previous section that 
the SRPS in MgO should have small barriers for their jumps and therefore move very 
rapidly, which in other words means a strong interaction with the band of delocalized 
states. 

4. Discussion and conclusions 

Although the sclf-trapping of holes and excitons is a well established phenomenon, 
its understanding in particular cases is a dillicult problem. Most o l  the theoretical 
attempts in this field are based on the calculation oC the self-trapping energy, where a 
negative value indicates trapping. The evaluation of the self-trapping energy is based 
on an uncertain procedure, which assumes that for the relaxation energy calculation 
one can completely localizc the particlc in the molecular cluster, where it is considered 
to be in a stationary state. Thc latticc relaxation encrgy tor such a state of the charged 
hole is usually large (greatcr than 1.5 cV). As shown in the present paper, for the 
case of the pure anion valence band, one can calculate the localization energy using 
the same calculation scheme as tor the relaxation energy. This approach may be 
generalized for the more complicated case of mixed bands and makes the estimate of 
the self-trapping energy more reliable. Our calculations for both the hole relaxation 
and the localization energies have shown that the resulting hole self-trapping energy 
in MgO is small, i.e. about -0.4 eV 

However, even the negative value of thc self-trapping energy does not prove that 
the hole will be really self-trapped in the scnse of being localized on one ion o r  
several ions long enough to bc observed by spcctroscopic methods. If the barrier for 
diffusion is small, its behaviour may bc dillicult to distinguish from that of the free 
hole. Therefore, calculation of the barrier for the hole diffusion is a necessary part 
of the total study of hole self-trapping. 
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'Ib avoid the problcm of thc non-stationary wavefunction for the hypothetical 
localized hole state in the perfect lattice, one can start from the states of the holes 
that are trapped by impurities. These hole States are usually stable and therefore 
may be successfully treated by stationary quantum-chemical methods. The thermally 
activated site jumps of the holes away from these decem in the first stage may be 
accompanied by the formation of localized SRPS and can be treated adiabatically. 
Present semi-empirical and ab initio quantum-chemical calculations of the height of 
the barrier for the localized hole jumps between the nearest sites in the perfect MgO 
lattice have emphasized the importance of the electron correlation at the barrier point. 
In particular, the difference bctwcen the crystalline lattice. polarization energies for 
the one-site hole locali7ation and the barrier point for its diffusion, corresponding 
to the hole delocalization by two nearest anion sites, increases the barrier height. 
Simultaneously the electron correlation treated explicitly for the two-site hole state 
appears to be larger than that for the one-site State and considerably decreases the 
barrier. Although we were unable to apportion accurately both of these effects, we 
believe that real adiabatic barricrs for thc hole diffusion in MgO are much less than 
the values of about 0.7-0.8 eV prcdicted by the previous pair-potential calculations 
1131 and present quantum-chemical CI.USTCR calculations. This rcsult is in qualitative 
agreement with the small value of the self-trapping energy. Both of them reveal that 
the state of the one-site localized holc is close to the band of free hole states and 
strongly interacts with it. 

Finally we would emphasize that the  static many-electron quantum-chemical ap- 
proach proposed in the present papcr may be uscful for studies of holes and excitons 
self-trapping in a wide range of matcrials. 
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