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Abstract. We propose a consistent approach to the study of hole self-lrapping and
diffusion in ionic crysials based on the static quantum-chemical calculation of the self-
trapping energy and adiabatic barriers for hole diffusion. The caiculations made for
MgO revealed the possibility that the hole is localized on one anion site in the perfect
lattice and predict its high mobility.

1. Introduction

Despite its long history, the theory of small polarons is still incomplete. Detailed
discussions of its present status have been presented in [1, 2]. There have been only
a few theoretical studies combining a many-electron treatment of the electronic struc-
ture of the localizing polaron with the Mott-Littleton approach for the calculation
of the accompanying polarization of the rest of the crystal [3-6]. Such studies have
the advantage of being specific and applicable to particular crystals. In this paper
we shall study the various possibilities for hole self-trapping and mechanisms of their
mobility in the bulk of the crystal; we calculate the key energetic terms using static
quantum-chemical methods which we apply to MgO—one of the simplest crystalline
oxides.

There are at least two differcnt ways in which to approach the problem of particle
localization or self-trapping in a material.

(i) Calculate the self-trapping energy, which is the difference between the energies
of the bottom of the free particle band and the localized stable state.

(i) Study the barriers for the particle transitions between equivalent localized
states or for their release from the localized state to the nearby impurity.

In the present paper, which focuses on the question of hole localization in MgO,
we employ both approaches, starting from the well established state of the hole
localized near the Lit ion substituted for Mgt on a lattice site,

In cubic oxides and in particular in MgO, the localization of the small polarons
near impurities is a well established phenomenon [7]. One of the best studied is
the [Li]® centre in MgO, which plays an important role in the catalytic activity of
this crystal [8]. It is known that the [Li]® centre is destroyed by optical excitation
in its absorption band or thermally at relatively low temperatures (about 200 K) [7].
However, the products resulting from its decay have not been observed. This result
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distinguishes the [Li]° centre from analogous impurity hole centres (Ag?+, TI?*+ [9,
10] and Mg* [11)) in alkali halides, in which their optical and thermal destruction
produces the self-trapped holes (V} centres).

The self-urapping of holes has not been spectroscopically observed in MgO, al-
though experiments employing various types of crystal excitation have been carried
out. One of the most plausible reasons for such behaviour for holes in MgO may be
high mobility, which makes it difficult to observe them experimentally by spectroscopic
techniques, although we should note that the only evidence favouring the existence
of highly mobile holes concerns their behaviour on the surface of MgO at high tem-
peratures [12]. Recent theoretical calculations of self-trapping energies indicated that
small-polaron formation is not favoured [13, 14]. It was suggested that, despite the
large lattice relaxation energy (1.7 ¢V [13] and 2.4 eV [14]), the holes cannot self-trap
in the bulk of MgO because the localization energy has almost the same magnitude,
but with the opposite sign. However, an estimatc of the localization energy was
made using a crude approximation, allowing only qualitative conclusions to be drawn.
Therefore a more sophisticated treatment is clearly needed; in particular we require
a consistent calculation scheme for both relaxation and localization energies. This
would be of value for studies not only of MgQ but also of other insulators, e.g. 8i0,
or Al,O,, where the self-trapping of the holes is still a subject for discussion [13, 16].

Two different approaches are used in this paper. First, we consider the hole
jocalized on the [Li}® centre and calculate the adiabatic barriers both for its jump
from the axial into the equatorial position within the centre and for its jump out of
the centre. The heights of these barriers are both about 0.9 eV, which seems to be
unreasonably large. To investigate the factors that might decrease the barrier height
we calculate the adiabatic barricrs for the hole diffusion in the perfect lattice and
include the effects of interatomic electron correlation, which we find considerably
decrease the barrier for hole migration. Therefore it seems plausible to conclude
that the thermal destruction of impurity hole centres in MgO leads to the creation of
rapidly moving smali-radius polarons (SRPs).

In order to check this conclusion we calculate the energy for the self-trapping
of the hole from the free delocalized state into the state in which it is localized on
one site of the perfect lattice. This energy may serve as an indicator of how far the
localized state (if it exists) is from the band of delocalized states, and together with
the value of the barrier for the hole jumps between localized states this may give a
more reliable picture of the behaviour of the holes in the lattice. For this purpose,
we introduce a new technique for the calculation of the localization energy. The
self-trapping energy is calculated to be negative but small, confirming that the holes
may localize but will be very mobile.

The plan of the paper is as follows. First we shall discuss (in section 2) the
method of calculation based on the embedded-molecular-cluster (EMC) quantum-
chemical approach, with the results of the calculations for the hole centres in MgO
given in section 3. Further discussion and conclusions are given in section 4.

2. Method of calculation

In the study of the positively charged hole states we nced to reproduce reliably the
chemical interactions of ions near the hole centres, the long-range interaction usually
described as crystal poiarization, and the band structure of the perfect crystal. For
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this purpose we use the EMC [3, 4, 17] model and the large-unit-cell (LUC) method
[18], both of which are combined in the CLUSTER code [3, 19}, which was employed
in most of the present calculations.

The CLUSTER code is based on the semi-empirical version of the UHF method
implementing the approximation of intermediate neglect of differential overlap (INDO)
[20], which allows us to obtain (with reasonable accuracy) the electronic structure of
a quantum cluster or LUC containing several tens of ions. The polarization of the
crystal is treated in the polarizablc-ion approximation [3, 17, 21]. It is calculated
consistently with the electronic structure calculation at each point of the adiabatic
potential energy surface as a response to the electric field produced by the difference
between the charge-density distributions Ap(R;) in the perfect lattice and in the
molecular cluster containing the defect [3]. The values of Ap(R;) are treated in
the ionic approximation as the difference between the effective charges (calculated
according to the Lowdin population analysis [20]) of the cations and anions in the
perfect lattice, calculated by the LUC method, and ions with the coordinates R, in
the molecular cluster. The lattice polarization is recalculated for each of the several
iterations of the UHF self-consistency procedure. The matrix elements of the potential
produced by the polarized lattice are included in the diagonal elements of the Fock
matrix.

The parameters of the INDO method were optimized to reproduce both the prin-
cipal features of the electronic structure of the perfect crystals under study as well
as the equilibrium distances and dissociation energies of relevant diatomic molecules
including MgO, LiO, O;, Mg¥, etc [19]. Such a parametrization improves the relia-
bility of the defect calculations. The basis sets contained 2s Slater-type atomic orbitals
for Lit, 3s for Mg+ and 2s, 2p for O%~. The lattice constant and the electronic
structure of the perfect MgO were obtained in a previous study of the perfect crystals
using the LUC model [19], and their values were also used in defect calculations.
Finally, the ionic polarizabilities were taken from [22).

The electronic excitation energies were calculated as the difference between the
total self-consistent energies of a crystal in its ground and excited states (the ASCF
method). The g-tensor for the paramagnetic [Li]° centre was calculated employing
the Stone [23] equation, derived using second-order perturbation theory to describe
the spin—orbit and Zeeman interactions of the unpaired electron orbital momenta
with the magnetic field, as is widely used in quantum-chemical studies.

3. [Li]° centre and srP in MgQ

3.1. Atomic and electronic siructure of the {Li]® cenire

The [Li]° centre in MgO has been much investigated both experimentally and theo-
retically [3, 7, 13]. Our calculations focus on the question of hole jumps around the
Li* ion, and of the thermal decomposition of the centre. The structural model of
the centre is shown in figure 1. The displacements of ions surrounding the centre are
given in the figure; they are close to those obtained in the previous calculation [28].
The hole is localized mainly on one of the oxygen ions, which appears to be strongly
displaced from the regular lattice site. The calculated position for the maximum of
the optical absorption band is £_,. = 1.8 eV and the components of the g-tensor
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are gy = 2.0043 and g, = 2.038. They agree quite satisfactorily with the corre-
sponding experimental values: E__, = 1.83 eV [17]; gy = 2.0049 and g, = 2.0545
. The optical absorption of the [Li]® and related impurity hole centres has been
established as being determined by transitions from resonant states in the valence
band into the local hole state in the gap [24]. The present calculations add quantitative
details to this qualitative model. In particular, there are two sources for perturbations
which give rise to the resonant states in the valence band: first, the strong perturbation
of the surrounding nearest-neighbour anions by the Li* ion; second, the much weaker
perturbation of the next-nearest-neighbour anions by the hole localized on one oxygen
anion. The first perturbation produces the resonant states near the top of the valence
band, whereas the second perturbation produces resonant states near the bottom
of the valence band. The maximum of the optical absorption band of the centre
corresponds to the transitions from the resonant states near the top of the valence
band. The energies of all such transitions depend very much on the values of the
ion displacements [11). The good agreement of our optical transition energy and
g-tensor with the experimental results shows that the geometry of the centre is also
determined reliably.

3.2, Hole jumps near the [Li]® centre and SRP in MgO

All six anions surrounding the Li* ion are equivalent. According to the EPR data
the hole localized in the [Li]° centre jumps between them, even at liquid-helium
temperature [7, 25]. The estimate of the activation energy of these jumps made in
[25] by fitting to the experimental kinetics gives a value of 0.2 éV. A much higher
value of 0.8 eV was obtained in recent Mott-Littleton calculations [13]. It is also well
established that individual [Li]° centres are thermally decomposed at about 200 K [7].
This relatively low temperature also seems to contradict the results of {13), in which
a value of 0.77 eV was calculated for the barrier of the first step of the Lit ion-
hole separation (see figure 1). These calculations were made on the assumption that
the hole transfer process takes place adiabatically, i.e. the relaxation of the reaction
coordinate is much slower than hole exchange between trapping sites.

The way in which the transition between sites occurs plays a key role in the
calculations and has to be addressed for each system individually, as discussed recently
in {1, 2). A useful ‘adiabaticity’ parameter G, has been introduced in [26]. It is
determined by the ratio of the ‘time spent’ by the reaction coordinate in the Landau-
Zener region [27] to the time taken by a one-electron (or a one-hole} transition
between trapping sites. A large value of this ratio means that the barrier state may
be approximately treated as stationary and calculated, taking into account both the
electronic and the ionic relaxation of the lattice. The parameter G is defined as [26]

G = 2n|T |2/ hQ.Ex )

where T is the electron transfer matrix element, Ey is the so-called reorganization
energy and 1/ is the rclaxation time of the reaction coordinate. In order to
estimate the value of (¢ we have calculated the recrganization energy and the transfer
matrix element for the case of hole transfer between the nearest sites around the Lit+
ion in the {Li]% centre.

According to the conventional definition [26], Ex may be calculated as the differ-
ence between the energy at the adiabatic potential energy minima, corresponding to
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the hole localization at one of the oxygen anions, and the state when the hole is local-
ized at a nearest-neighbour oxygen anion but with the crystal relaxation remaining the
same as in the first case. The calculation of T is much less straightforward [28, 29].
As shown in [29], for the case of electron transfer between strongly interacting reso-
hant states, a good estimate of T may be obtained in terms of the charge-delocalized
solution, using the following expression:

T =(E_ - E,)/2.

Here E_ and E_ are the system total energies at the top of the adiabatic barrier,
corresponding respectively to the many-electron states W_ and W, obtained -from
the configurational mixing between the non-orthogonal diabatic states ¥, and W,
localized at each diabatic minimum. The ¥, wavefunctions may be written as

Yy = (W, = ¥,)/[2(1 £ 5,))/°

where the S,, is the overlap integral between ¥, and ¥,. To a good approximation,
E_ may be calculated as the crystal total energy, corresponding to the barrier-type
relaxation and the wavefunction equally delocalized by two oxygen ions, whereas E_
is the crystal total energy, corresponding to the one-electron excitation from this
state to the ¥ _ anti-bonding-type state, differing mainly by the sign in the linear
combination of atomic orbitals, localized on the two oxygen anions.

The resulting values of T and £, calculated for the hole jumps between two
nearest oxygen anions in the [Li]° centre are 0.25 eV and 2.0 eV. Assuming that the
value of ©_ is between 10’ and 10''s~!, we obtain for G an estimate of 3-30, ie.
larger than unity. This supports the ability to use the adiabatic approximation in the
barrier height calculation for the hole jump between nearest sites.

The calcujated values of the adiabatic barriers for the hole transfer between two
nearest oxygen anions in the [Li]° centre and for the hole jump into the next-nearest-
neighbour position appeared to be very close to each other and equal to about
0.9 eV, ie. even larger than those obtained in the Mott-Littleton calculations [13]).
This is most surprising for hole jumps around the Li* ion. The large barrier for
the first jump of the hole out of the [Li]° centre may be partly caused by the large
Coulomb interaction between the Li* ion and the hole. It should also be noted
that the extent of the hole localization does not change in the next-nearest-neighbour
position relative to the Lit ion; it is still almost completely localized on one oxygen
anion. One of the reasons for the large barrier for the hole jump from the axial into
the equatorial position might be the large axial lattice relaxation around the [Li]°
centre. However, both resuits contradict experimental observations. Moreover, if the
interaction between the hole and the impurity centre is so important, one can assume
that the barrier for the unperturbed hole jumps between nearest sites of the perfect
lattice has to be much lower.

To investigate this assumption and possible reasons for such large values of the
barrier heights, we have simplified the system by performing the calculations for the
localized hole transfer between necarest sites in the perfect lattice. The previous
calculations [13, 14] suggested that the holes could not self-trap in MgO because of
the large value of the localization energy. Therefore one could expect that the barrier
for their intersite transfer has to be low, reflecting a2 high mobility. Surprisingly we
obtain a value for the adiabatic barrier of 0.66 eV. This result reveals clearly that the
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perturbation by the defect is not the main reason for the high barriers also in the
previous case. Analysing the contributions of diffcrent factors to the barrier value, we
find that about 30% of it is due to a repolarization energy, ie. the difference between
the energics of the polarization of the lattice by the hole localized on one site and
delocalized by two sites. That is, in the delocalized case the polarization energy is
about 0.2 eV smaller than in the localized case, contributing this value to the barrier
height.

It is well known that electron correlation is especially important at reaction barrier
regions and usually considerably affects their height. In our calculations the intra-
ionic part of the electron correlation is effectively included in a semi-empirical manner
through the electronic part of the lattice polarization and the experimental values of
the ionic polarizabilities used in the caiculation. In order to estimate the possible
role of the interionic part of eclectron correlation we have performed ab initio cluster
calculations of the localized and delocalized hole states.

3.3. Role of the electron correlation in the calculation of the adiabatic barrier of the SRP
Jumps

In calculating the magnitude of the differential electron correlation between the
localized state situated on a given oxygen anion and the adiabatic barrier state for the
hole transfer between nearest oxygen sites we have employed an embedded-cluster
model. This comprises two explicitly treated oxygen anions surrounded by a point ion
array chosen to reproduce the Madelung potential of the infinite crystal at the oxygen
site. Ab initio all-eleciron calculations were performed using the program GAMESS
[30], within the GVB formalism [31] to treat the open shell hole states at the Hartree—
Fock level. The basis set utilized was 8-411G*, optimized for bulk magnesium oxide
within the program CRYSTAL [32].

Post-Hartree-Fock treatment of the electron correlation was incorporated by con-
figurational interaction involving single and double excitations (CI1SD) [33], with an
active space that includes all valence electron orbitals and their corresponding virtual
states.

Because of their point charge nature, it is not possible to perform geometry opti-
mization of the surrounding ions. Hence, the positions of the nearest-neighbour em-
bedding ions were taken to be the same as those calculated by the CLUSTER method.
For the localized hole state the nearest magnesium cations are displaced 0.06a away
from the oxygen anion on which the hole is situated, while the surrounding 12 oxygen
anions relax towards the central oxygen anion by 0.03a. At the transition state for
hole migration, both oxygen anions are predicted by the semi-empirical method to
relax by approximately 0.2 A away from each lattice site towards each other, with the
magnesium cations now displaced 0.03a away from both oxygen sites.

The adiabatic barrier to hole transfer is given by the energy difference between
the state in which the hole is completely localized on one oxygen centre and that in
which it is equally distributed over the two adjacent oxygen sites, with the geometries
of surrounding ions as described above. This barrier is found to be 1.05 eV at
the ab initio Hartree-Fock level, while inclusion of CIsD for the valence electrons
greatly reduces this value to 0.23 eV, The correlation energies for the one-centre and
two-centre localized states at these particular geometries are calculated to be 9.8 eV
and 10.6 eV, respectively., Therefore the reduction in barrier height is due to the
difference A between these two correlation energies. We have further examined the
variation in A as a function of the separation between the two explicitly considered
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oxygen anions in the hole migration transition state. The magnitude of A is found
to be approximately invariant at 0.8 eV over a range of 0.8 A in the inter-oxygen
distance.

To cxplain the difference between the corrclation energies of the localized and
delocalized states it is necessary to examine the nature of the dominant excitations.
At the transition state, the symmetry of the system is D,, and the main excitation
involves the promotion of an electron from the doubly occupied o, orbital to the
singly accupied o, and of a second electron to an unoccupied orbital. In the case of
the localized hole state the electronic configurations with the largest coefficients in the
ClI expression do not involve excitations to or from the singly occupied orbital. Hence
the majority of the correlation energy is due to clectrons in the doubly filled valence
orbitais. Consequently, at the barrier point to hole migration, the hole is distributed
over several orbitals in the CI expression, giving rise to an extra contribution to the
cotrelation energy.

While the above ab initio calculations can only be considered as a preliminary
study, the importance of inclusion of correlation is apparent. Although the value of
A, equal to —0.8 eV, cannot be treated directly as an additive correction to the barrier
height of 0.66 eV obtaincd semi-empirically, the magnitude of the term is sufficiently
large to suggest that the barrier {or hole migration between nearest perfect lattice
sites will be greatly reduced. The same arguments may be used to understand the high
barrier values for the hole jumps near the defect. Since physically the processes are
identical, it is quite plausible that the calculated barriers will be reduced if electron
correlation were to be taken into account.

The correlation included in the ab initio calculations comprises both intra-ionic
and inter-ionic contributions; however, the polarization energy calculated semi-
empirically already includes intra-ionic polarization of oxygen anions sharing the hole.
Consequently the value of A obtained here docs not allow us to reach a more defi-
nite quantitative conclusion without performing more cxtensive ab initio calculations
including both polarization of the surrounding lattice and electron correlation inside
the cluster.

3.4. Self-trapping from the free hole state

Now, let us compare the results of the above calculations with the caiculation of
the self-trapping energy (rom the free hole state. Strictly speaking, in order to do
this we need to use a method suitable for both localized and completely delocalized
hole states. In principle the best candidate is the model Hamiltonian (MH) approach
developed by Toyozawa [34]. Howcver, at present such methods do not allow us
to take into account the microscopic structurc of the hole (ie. the hole electronic
density distribution and large displacements of surrounding ions). On the other hand,
quantum-chemical methods are well suited to describing local chemical interactions of
ions near a point defect treated in terms of the molecular cluster but fail to consider
hole states delocalized through a whole crystal. Our idea is therefore to combine
both methods.
The assumptions used in such an approach are as follows.

(i) The valence and free hole bands have equivalent dispersions.

(ii) The electronic polarization of the crystal produccd by the delocalized hole
and the hole localized on one site are equal.

(ili} The hole state artificially localized in the molecular cluster, simulating the
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perfect lattice, can be used as the initial state for the stationary quantum-chemical
relaxation energy calculation.

In these assumptions we can find the bottom of the free hole band and the
energy of the state in the band, corresponding to the certain degree of localization
(one, two, etc, sites), The difference between these two energies will give us the
so-called localization energy E, .. Now, starting from the same localized state in the
cluster calculation, one can find the relaxation energy E.;, as a difference between
crystal energies in that state without ionic displacements and the completely relaxed
localized state, The sum of £, and E, is believed to be the self-trapping energy.
In the simplest approximation the value of E, . may be taken as hall the valence
band width [35-37]. In this approximation, the localization cnergy has been found to
be close to or larger than the E,; in MgO {13, 14].

In the present paper we uscd the more accurate MH method to calculate the hole
localization encrgy on one or two anions. When constructing the MH, one has to take
into account the fact that, since the upper valence bands of the alkali halides and
oxides are formed by the p states of anions, the off-diagonal (in lattice sites) matrix
elements of the MH differ from each other cven for anions entering the same anion
sphere. Neglect of these differences leads to an overestimate of the hole localization
energy, as is the case for earlier studics [36, 37]. Let us write down the Hamiltonian
of a perfect crystal in the tight-binding approximation incorporating two anion spheres
of nearest neighbours. First, the free-hole Hamiltonian in site representation reads

‘L‘{h == Z%“IM‘L“ - Z Z tOp,L’uaIuaL-’rL',u (2)
Ly

L,L" p v

where L and L’ are lattice translational vectors, i, v = o, v, =, [ﬁ) is the Wannier
function of p kind localized at the site L. (Coordinate axes are oriented along
(100), (010) and (001) crystal axes.) «}f , and a, are hole creation and annihilation
operators at the p, orbital |L} placed at the site L. An additional vestriction in
equation (2) is that |L| < 2a, where ¢« is the interanion distance. It follows from
the lattice symmetry that the matrix elements ¢, ;. for anions L' in the first sphere
could be described by three parameters: T, (interaction of two p orbitals which lie
along the vector L’ (figure 2) and oriented in the same manner), T, (p orbitals
perpendicular to the vector I’ and oriented in the direction of nearest anions) and
T, (p orbitals perpendicular to L’ and directed to the nearest cations). Thus, we
find for an arbitrary vector L that the matrix ¢y, = |{t,, 1|l = CE.t..Cp., where
C,: is the three-dimensional rotation matrix orienting sites 0 and L' along the =z axis,
t,. diagonal matrix of elements T,, 7, and T,. For example, for L' = (1,1,0)
the matrix C;, is an anti-clockwise rotation by an angle nf4, t,, =T, tyy = T,,,
133 = T,, We proceed in a similar way for anions L’ from the second ccordination
sphere; in this case t,, is diagonal for all L', these diagonal elements are either T,
or T}, = T,, = T,,. (Their meaning is the same for those in the first sphere.)

Diagonalization of equation (2) permits us to calculate the dispersion of all three
hole bands ej(k), Jj = 1,2,3. Thus, the hole energics at ', X and L points of the
Brillouin zone (BZ) are

Ep=—€p— 8 —4dy ~ 25
el:!c=—eu+8a—4'y—26 €% = —eg+ 4y — 26 3)

dl = ¢y +88+26 L =—€=48+2¢6.

[
| g
l
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Figure 1. The schematic structure of the [Li]® cen-  Figure 2, The schematic iliustration of the notations
tre in MgO. Long arrows show the hole transitions  used in the calculation of the matrix elements of
into the equatorial position and out of the cen- the MH.

tre. Small arrows indicate the directions of the
ion displacements around the centre from their site
position. The oumbers near the ends of the small
arrows are the values of the ion displacements in
the units of MgO lattice interionic distance,

where the superscripts || and L denote energy branches whose eigenvectors are paral-
lel and perpendicular to the direction of the wavevector k. Also, « = (T, + Toy s
ﬁ=-§;(Td—Tﬂ),‘y=Tﬁ.? and 6 = T! + 2T}, ’

In the state corresponding to hole localization on one centre, the hole wavefunc-
tion may be writicn as

@, = o, [0)
whereas in the two-centre case it takes the form
|
¢2 = E(HEL + ag-y + E‘t?-:r + a?'y)IO).

The site O is placed at the coordinate origin, and site 1 lies on the o (110) axis
(anions 0 and 1 forming the V| centre). The hole self-energy in these states appears
to be equal to (cf [38])

E, = (&,[H|P)) = —¢ E, = (0l HylDy) = —¢, - T,.

Band-structure calculation by means of any quantum-chemical method allows us
to obtajn all the paramcters of the Hamiltonian (2). In the present paper these
calculations were done with the aid of the LUC method in the INDO approximation,
employing the CLUSTER code [18, 19]. (Note that the same code was also used for
the EMc [Li]° centre calculations.) We employed the LUCs [Mg,O;] and [Mg,.O4,],
allowing us to obtain energies at correspondingly three and eight symmetry points
of the BZ [18]. The calculation at only T', X and L k-points already satisfactorily
reproduces the main features of the band struciure and electron density distribution
in ionic crystals [18]. In particular, the widths of the valence band obtained for the
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small LUC (5.8 €V) and for the large LUC (5.9 eV) are very close. In the three-k-points
approximation the centre of mass of the hole band may be written as

¢g = —F(3er + 3ck + 6cg + 4c] + 8et).

Other parameters of the MH can be easily obtained from equation (3).

The results of our LUC calculations have dcmonstrated that the localization energy
depends only slightly on the numbcr of k-points included and appears to be much
smaller than half the valence band width, used as E . in the previous studies. Its
value for the three k-points is calculated to be 1.9 eV and for eight k-points 2.0 eV.
The present results concerning E, ., however, should be considered as estimates,
consistent with the method of calculation of the relaxation energy, since there are
still discrepancies between the theoretical and the experimental values of £, for MgO.
In particular, our value of £, = 5.9 ¢V is larger than the total valence band width of
5.1 eV obtained in the CRYSTAL calculation [32] and 4.8+0.3 eV obtained in recent
experiments [39]. For comparison the calculations [40] by the tight-binding method
gave for £, the value of 8.5 ¢V. More detailed discussion of the present status of the
studies of MgO electronic structure is presented in [13, 32, 40}

With the present value of E, and the relaxation encrgy E; = —2.4 eV obtained
in [14] by the same method, we obtain a scll-trapping cnergy of about —0.4 eV. Its
small value shows that the localized state of the hole is close to the bottom of the band
of free hole states. This is consistent with the conclusion of the previous section that
the SRPs in MgO should have smal! barriers for their jumps and therefore move very
rapidly, which in other words means a strong interaction with the band of delocalized
statcs.

4. Discussion and conclusions

Although the sclf-trapping of holes and cxcitons is a well established phenomenon,
its understanding in particular cascs is a difficult problem. Most of the theoretical
attempts in this field are bascd on the calculation of the self-trapping energy, where a
negative value indicates trapping. The evaluation of the self-trapping energy is based
on an uncertain procedure, which assumes that for the relaxation energy calculation
one can completely localize the particle in the molecular cluster, where it is considered
to be in a stationary state. The lattice relaxation energy [or such a state of the charged
hole is usually large (greater than 1.5 eV). As shown in the present paper, for the
case of the pure anion valence band, one can calculate the localization energy using
the same calculation scheme as for the relaxation cnergy. This approach may be
generalized for the more complicated case of mixed bands and makes the estimate of
the self-trapping encrgy more reliable. Qur calculations for both the hole relaxation
and the localization energics have shown that the resulting hole self-trapping energy
in MgO is small, i.e. about —0.4 eV.

However, even the negative value of the self-trapping energy does not prove that
the hole will be really sclf-trapped in the sense of being localized on one ion or
several ions long enough to be observed by spectroscopic methods. If the barrier for
diffusion is small, its behaviour may be difficult to distinguish from that of the free
hole, Therefore, calculation of the barrier for the hole diffusion is a necessary part
of the total study of hole self-trapping.
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To avoid the problem of the non-stationary wavefunction for the hypothetical
focalized hole state in the perfect lattice, one can start from the states of the holes
that are trapped by impurities. These hole states are usually stable and therefore
may be successfully treated by stationary quantum-chemical methods. The thermally
activated site jumps of the holes away from these defects in the first stage may be
accompanied by the formation of localized SRPs and can be treated adiabatically.
Present semi-empirical and ab initio quantum-chemical calculations of the height of
the batrier for the localized hole jumps between the nearest sites in the perfect MgO
lattice have emphasized the importance of the electron correlation at the barrier point.
In particular, the difference between the crystalline lattice polarization energies for
the one-site hole localization and the barrier point for its diffusion, corresponding
to the hole delocalization by two nearest anion sites, increases the barrier height.
Simultaneously the electron correlation treated explicitly for the two-site hole state
appears to be larger than that for the one-site state and considerably decreases the
barrier. Although we were unable to apportion accurately both of these effects, we
believe that real adiabatic barriers for the hole diffusion in MgO are much less than
the values of about 0.7-0.8 eV predicted by the previous pair-potential calculations
[13] and present quantum-chemical CLUSTER calculations. This result is in qualitative
agreement with the small value of the self-trapping energy. Both of them reveal that
the state of the one-site localized hole is close to the band of free hole states and
strongly interacts with it.

Finally we would emphasize that the static many-electron quantum-chemical ap-
proach proposed in the present paper may be useful for studies of holes and excitons
self-trapping in a wide range of matcrials.
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